Human robot cooperation with compliance adaptation along the motion trajectory
نویسندگان
چکیده
In this paper we propose a novel approach for intuitive and natural physical human–robot interaction in cooperative tasks. Through initial learning by demonstration, robot behavior naturally evolves into a cooperative task, where the human co-worker is allowed to modify both the spatial course of motion as well as the speed of execution at any stage. The main feature of the proposed adaptation scheme is that the robot adjusts its stiffness in path operational space, defined with a Frenet–Serret frame. Furthermore, the required dynamic capabilities of the robot are obtained by decoupling the robot dynamics in operational space, which is attached to the desired trajectory. Speed-scaled dynamic motion primitives are applied for the underlying task representation. The combination allows a human co-worker in a cooperative task to be less precise in parts of the task that require high precision, as the precision aspect is learned and provided by the robot. The user can also freely change the speed and/or the trajectory by simply applying force to the robot. The proposed scheme was experimentally validated on three illustrative tasks. The first Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10514-017-9676-3) contains supplementary material, which is available to authorized users. B Bojan Nemec [email protected] Nejc Likar [email protected] Andrej Gams [email protected] Aleš Ude [email protected] 1 Humanoid and Cognitive Robotics Lab, Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia task demonstrates novel two-stage learning by demonstration, where the spatial part of the trajectory is demonstrated independently from the velocity part. The second task shows how parts of the trajectory can be rapidly and significantly changed in one execution. The final experiment shows two Kuka LWR-4 robots in a bi-manual setting cooperating with a human while carrying an object.
منابع مشابه
Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملHuman-robot cooperative manipulation with motion estimation
In this paper, a control method of robots for human-robot cooperative manipulation is investigated. We propose estimating human motion using the minimum jerk model for smooth cooperation. Using nonlinear least-squares method, we identify two parameters of the minimum-jerk model in real-time. The estimated position of the human hand is used to determine the desired position of the end-effector o...
متن کاملA Nonparametric Motion Flow Model for Human Robot Cooperation
In this paper, we present a novel nonparametric motion flow model that effectively describes a motion trajectory of a human and its application to human robot cooperation. To this end, motion flow similarity measure which considers both spatial and temporal properties of a trajectory is proposed by utilizing the mean and variance functions of a Gaussian process. We also present a human robot co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017